Dual-Pump CARS and OH PLIF

PI: Andrew Cutler
PhD Students: Gaetano Magnotti, Luca Cantu, Emanuela Gallo
The George Washington University

Collaborators
Paul Danehy (ASOMB), Craig Johansen (NIA)
NASA Langley Research Center

June 16, 2011

National Center for Hypersonic Combined Cycle Propulsion
Background

- CFD methods employing semi-empirical models used in analysis of hypersonic airbreathing engine flow paths
 - RANS (or Favre averaged) codes have models for turbulent stresses, mass and energy transport, turbulence chemistry interactions
 - LES methods have models for subgrid scale turbulence
- Models depend upon experimental data for validation
 - Information on mean flow and statistics of the turbulent fluctuation in flow properties
- Data requirements
 - Simple well defined supersonic combustion flows with well-known boundary conditions
 - Time and spatially resolved
 - Good instrument precision
 - Converged statistics
- Approach
 - Dual-pump CARS
 - T, mole fraction species
 - Planar laser-induced fluorescence imaging of OH radical (PLIF)
 - Flow-visualization
Flow Fields

Laboratory supersonic flame with 10 mm center jet

Supersonic free jet flames (hot center jet with H₂ co-flow)

University of Virginia’s Dual-Mode Scramjet

Scramjet combustor

National Center for Hypersonic Combined Cycle Propulsion
Dual-Pump CARS

- Four-color mixing process at beam focus / intersection
 - Two narrowband pump (Green + Yellow) + broadband Stokes (Red) laser
 - Probe molecular Raman transitions
 - Two simultaneous processes
- Coherent signal beam (Blue)
 - Analyze with spectrometer
 - Fit spectra to theory to obtain T, mole fraction species
- Measurement time ~10 ns, volume ~50 µm x 1.5 mm
“Mobile” CARS System

Laser cart

Transmission

Collection

Detection

Beam Relay System (BRS)

- Narrowband and broad-band dye laser beams on top of each other
- Flame

- Laser cart
 - Nd:YAG (532 nm, 1.2 J, 20 Hz, seeded) = Green
 - YAG-pumped broad-band dye laser (~9.6 nm or 263 cm⁻¹ at 605 nm) = Red
 - YAG-pump narrow-band dye laser (~0.07 cm⁻¹ at 553 nm) = Yellow
 - Remote beam steering (picomotor mounts)
 - Control of beam size (telescopes) and energy (polarizers/waveplates)

- Detection system
 - Focusing lens, polarizer, remote beam steering
 - 1 m monochromator
 - Cooled CCD
Beam Relay System at UVa

- Moves beam crossing within flow field; 3 components, typically 2 motorized

- **CARS window**

- **Transmission**

- **Collection**

- **Measurement point**

- **Dual mode combustor**

- **Linear bearings/rails**

 Horizontal motions are motor driven
Transmission and Collection Optics

- Laser beams focused and combined with separate mirrors and lenses
- Focal plane imaging system
 - Beam focusing
 - Beam crossing

![Diagram of Transmission and Collection Optics](image)

- Focal plane imaging system: microscope objective and CCD camera
- Multi-pass dichroic splitter
- Signal beam
- To BRS and Detection

Focal plane images

National Center for Hypersonic Combined Cycle Propulsion
Optical Implementation at UVa
Method for Fitting Spectra

- Sandia CARSFT code
 - Computes theoretical spectra
- New algorithm* fits spectra by interpolating from library of pre-computed spectra
- Novel feature is structure of library (sparsely packed) and method for interpolation of spectra from library
 - Smaller libraries, faster library generation, faster fitting
- Allows fitting of more chemical species and faster turn around
 - Enables “WIDECARS”

*Cutler, A.D., Magnotti, G., J. Raman Spectroscopy, 2011.
Measurements in Hencken Burner

- Hencken flat flame burner
 - H_2-air flame
 - Flame temperature and composition known from theory
 - Computed from gas flow rates assuming adiabatic reaction to equilibrium

Average DP CARS spectra at 3 equivalence ratios
Typical spectra normalized and fitted
(a) $\phi=0.23$ (single shot)
(b) $\phi=1.17$ (single shot)
(c) $\phi=0.23$ (mean)
(d) $\phi=1.17$ (mean)
Fitted Temperature in Hencken Flame

- Means agree well with theory
- Actual standard deviation (SD) in flame due to unsteadiness is unknown but believed small
- Fitted parameters have noise
 - Mode noise in broad band dye laser, camera noise, photon shot noise
- SD of fitted parameters depends on selection of residual minimized by fitter
 - R_2 = noise-weighted least squares fit to signal intensity (Snelling et al, 1987)
 - (R_1, R_3 commonly used in the literature)
- We found $R_2 < R_3 < R_1$
- Similar results for fitted N$_2$, O$_2$, H$_2$ mole fractions

SD in T reduced x2 by proper selection of residual! Important for turbulence studies
Saturation Effects

- Signal $\propto I_{p1} I_{p2} I_S d^2 L^2$
 - Want to minimize L
 - Must maximize $I_{p1} I_{p2} I_S$ to maintain signal
 - Saturation effects limit $I_{p1} I_{p2} I_S$

- Saturation effects studied in Hencken flame
 - Mixture of Stark shift and stimulated Raman pumping

- Fitted mole fraction more sensitive than temperature
 - Error in O_2 up to 30%
 - H_2 most sensitive to saturation
 - Saturation thresholds determined
 - We now know how to avoid saturation
Status of CARS

• CARS data base in laboratory supersonic flame
 – Data acquisition completed
 – Data analysis in progress

• CARS system currently installed at UVa
Supersonic Flame*

- Center jet 10 mm, hydrogen vitiated air, variable Mach (0.75-2.0) and temperature
- Unheated, low-speed coflow
- 10 test cases; variables
 - Nozzle exit Mach number (M_e)
 - Center jet temperature (equivalent flight Mach M_h)
 - Coflow gas
 - $C = H_2$ coflow, combustion
 - $M = N_2$ coflow, mixing but no combustion
- Nominally 100,000 spectra for each test case, fitted for T, and mole fractions N_2, O_2, H_2
 - Sampled at 5 axial locations, 23-30 radial locations at each
- Will be used by NCHCCP modelers

*This work mostly supported by NASA Hypersonics NRA grant (NNX08AB31A)
Typical Results in Supersonic Flame

Plots of mean T vs. radial distance at several axial locations

Mixing (coflow = N₂)
$M_e=1.6$
$M_h=7$

Combustion (coflow = H₂)
$M_e=1.6$
$M_h=6$

Center jet diameter = 10 mm, surveys are at ~1, 15, 35, 65, and 100 mm
“WIDECARS”*

- Enable DP CARS in C₂H₄ + H₂ – air flames
- New broadband Stokes laser
 - 2x increase in spectral width allows additional chemical species to be simultaneously probed
- Temperature, mole fraction N₂, O₂, CO₂, C₂H₄, H₂ and CO measured at 300 K.
 - Most species ever simultaneously measured with CARS!
 - Fit with new software
- Future development required
 - Validate at flame temperature
 - Modeling/calibration for C₂H₄

*Collaboration with Tedder and Danehy (LaRC)
Tedder et al., Appl. Optics, 2010

Demonstration in a room T gas cell
OH PLIF Preliminary Setup

• Modified CARS laser cart to produce UV light needed for OH PLIF
 – Installed doubling crystal
 – Optimized laser for power

• Performed OH PLIF measurements in laboratory
 – Set up sheet forming optics
 – Set up laminar OH combustion with water welder
 – Investigated camera settings
 – Determined optimal PLIF transitions

• Flow visualization only
 – Signal roughly ~ OH density (not calibrated)
Planar Laser-Induced Fluorescence (PLIF)

- Tunable Laser
- Laser sheet excites molecules
- H_2 \rightarrow O_2 (Water welder provides reactants for combustion)
- Excited molecules fluoresce
- CCD camera detects
- $\lambda = 281.135 \text{ nm}$
- $A^2\Sigma^+ \leftarrow X^2\Pi(1,0)$
- $\text{LIF} \sim n_{\text{OH}}$
Ongoing Work and Future

- **Summer 2011**
 - Acquire CARS data bases in UVa Dual Mode Scramjet Configuration B (no isolator) and C (with isolator)
 - OH PLIF flow visualization (same cases)

- **2011-2013**
 - Develop and validate “WIDECARS” for $C_2H_4 (+ H_2)$ in Hencken flame
 - Acquire CARS data base supersonic flame with $C_2H_4 + H_2$ coflow
 - Acquire CARS/PLIF data base in UVa scramjet with ethylene flame/cavity flame holder
Summary

• Motivation
• Dual pump CARS
• “Mobile” system and implementation at UVa
• Method of fitting spectra
• Measurements in a Hencken burner (H₂-air) and supersonic jet
• Saturation effects
• Measurements in a supersonic flame
• WIDECARS
• OH PLIF setup and preliminary data
• Ongoing and future work